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A composite correlation of the average Nusselt number and the channel Rayleigh number for buoyant air
flow through inclined channels with uniform heat flux boundaries is presented. The form of the correla-
tion is based on dimensional analysis and is a superposition of the developing and fully developed flow
limits. In the limit of fully developed flow, an analytical solution for the Nusselt number is derived. The
developing flow limit follows the format of the correlation for a single plate. The composite relationship

based on the top wall temperature is Nu ¼ 6:25ð1þrÞ
Ra00 sin /

þ 1:64
ðRa00 sin /Þ2=5

h i�1=2
, where r is ratio of the heat flux at the

top and bottom wall. At inclination angles of 30� � / � 90�, this correlation predicts the available data

base for 10 � Ra00 � 105 and agrees with the analytical solution for 1 � Ra00 � 102.
� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Prior studies of laminar free convection of air in open-ended
vertical channels with constant heat flux boundaries [1–10] show
the Nusselt number lies between two limits associated with the
channel length-to-spacing aspect ratio. At large aspect ratio, the
flow becomes fully developed. At small aspect ratio, the flow is
developing. At intermediate aspect ratios, Bar-Cohen and Rosen-
how [5] show the Nusselt number, based on the temperature at
the mid-point along the length of the channel, can be approxi-
mated by the composite relationship:

Nu1=2 ¼ ðc1Ra001=2Þ�2
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{fully developed flow

þð0:73Ra001=5Þ�2
zfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflffl{developing flow2

64
3
75
�1=2

: ð1Þ

For fully developed flow c1 = 2.89 for symmetric heating and 0.408
for asymmetric heating. The developing flow form is based on heat
transfer from a vertical plate [11] and the coefficient (0.73) is ob-
tained by regression of data in vertical channels [1,3,4]. The objec-
tive of the present work is to develop an analogous composite
relationship for inclined channels with constant heat flux bound-
aries. The work was motivated by an interest in cooling of solar
photovoltaic panels via buoyancy driven flow of ambient air in a
channel beneath the solar panel. Thus, the specific interest is the
top surface temperature.
ll rights reserved.
Much of the prior work on inclined channels considers isother-
mal boundaries [12–17]. Data for channels with constant heat flux
boundaries are more limited in scope. Manca et al. [18] and Bianco
et al. [19] performed experiments for symmetric and asymmetric
heating (top wall heated) and inclination angles in the range
30� 6 / 6 90�. Both studies provide simple curve fits of the data
in a similar format:

logðNuÞ ¼ a1 þ a2 logðRa00 sin/Þ þ a3½logðRa00 sin/Þ�2

10� Ra00 � 105

30� � /� 90�

( )
½18�; ð2Þ

logðNuÞ ¼ a4 þ a5 log½Ra00 sinð/� 2:7Þ� þ a6flog½Ra00 sinð/� 2:7Þ�g2

10� Ra� 105

30� � /� 90�

( )
½19�: ð3Þ

In Eqs. (2) and (3), the Nusselt number is based on the average top
wall temperature, and the constants a1. . .a6 depend on the heating
mode (symmetric, asymmetric). Manca and Nardini [20] provide a
composite relation for inclined channels in a format similar to that
of Bar-Cohen and Rosenhow [5]:

Nut;b ¼ f½c1ðRa00 sin /Þ1=2��2:3 þ ½c2ðRa00 sin00 /Þ1=5��2:3g�1=2:3

10 � Ra00 � 105

5� � / � 90�

c2 ¼ 0:81 for symmetric heating
c2 ¼ 1:41 for asymmetric heating

8>>><
>>>:

9>>>=
>>>; ð4Þ

In Eq. (4), the Nusselt number is based on the average temperature
of both surfaces. Consequently, the relationship is not applicable to
determine the temperature of the top wall.
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Nomenclature

A coefficient, Eq. (38)
B coefficient, Eq. (39)
b coefficient, Eq. (23)
C1 . . . C4 coefficients, Eq. (29)
cp specific heat (kJ/kg K)
Dh hydraulic diameter (m)
g gravitational acceleration (m/s2)
k thermal conductivity (W/m K)
L channel length (m)
_m mass flow rate (kg/s)

Nu average channel Nusselt number, q001S=kðT1 � ToÞ
Nu1/2 channel Nusselt number at the heated wall mid-height,

q001S=kðT1;L=2 � ToÞ
Nut;b Nusselt number, based on the average surface tempera-

ture for both walls
p pressure (kg/m s2)
P modified pressure, p� pe þ qog sin /ðx� LÞ (kg/m s2)
P* dimensionless pressure, P=qobhbegL sin /
Pr Prandtl number, m/a
q00 heat flux (W/m2)
Ra00 modified channel Rayleigh number, gbq001S5=amkL
r heat flux ratio, q002=q001
S channel spacing (m)
T temperature (K)
u streamwise velocity (m/s)
uo characteristic fluid velocity (m/s)
u* dimensionless streamwise velocity
v transverse velocity (m/s)
x, y coordinates (m)

x*, y* dimensionless coordinates

Greek symbols
a thermal diffusivity (m2/s)
b thermal expansion coefficient (K�1)
h temperature difference (T � To) (K)
h* dimensionless temperature difference, hk=q001S
l viscosity (kg/m s)
m kinematic viscosity (m2/s)
q density (kg/m3)
s shear stress (kg/m s2)
/ inclination angle (deg)
c coefficient in Eq. (30), bðS=LÞcot/

j coefficient in Eq. (30),
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þr
Ra00sin/

q
k coefficient in Eq. (28), ðk � 1

4 bRa00sin/Þ1=4

n constant, Eq. (21)

Subscripts
1 top wall
2 bottom wall
be bulk exit
c cross section
e channel exit
i channel inlet
o reference
s surface
w wall
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Fig. 1. Inclined channel with constant heat flux boundaries.
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Brinkworth et al. [21–23] propose an approximate model for free
convection in inclined channels with top heating. The approach
estimates the mass flow rate in the channel from a force balance
and then assumes forced convection. The second step essentially
decouples the velocity and the temperature fields and assumes
the velocity profile is always symmetrical. The adequacy of this
stage is therefore questionable over a wide range of Rayleigh
numbers.

The composite relation for the average channel Nusselt number
developed in the present study provides an accurate estimate of
the top wall temperature for buoyant air flow through inclined chan-
nels with uniform heat flux boundaries. The form of the composite
relationship follows that presented in [5] with the relevant dimen-
sionless parameters for an inclined channel. The fully developed
Nusselt–Rayleigh number correlation is based on an analytical solu-
tion of the two-dimensional governing conservation equations. The
analytical approach follows the earlier work by Aung [2] for vertical
channels with isoflux walls. The coefficients required for the com-
posite relationship are derived from a regression analysis of the ana-
lytical solution provided in this study and the prior data for
developing flow as given by Eq. (2). The correlation takes into ac-
count the wall heat flux ratio and reduces successfully to the prior
relation for vertical channels [5]. The suggested composite relation
is valid for 1 � Ra00 < 105 and 30� � / � 90�.

2. Fully developed flow

The analytical solution for the average temperature of the top
surface of the channel and the Nusselt number based on this tem-
perature is developed for an inclined channel of length L and spac-
ing S (Fig. 1). Uniform heat flux is applied at each surface. The
channel width is assumed to be much larger that the channel spac-
ing and thus the problem is two-dimensional. For low Rayleigh
numbers, or equivalently for small spacings, fully developed flow
conditions are achieved. For aspect ratios, L/S, greater than 10,
the streamwise momentum and thermal diffusion are negligible
[9,12,24] and thus the conservation equations, subject to the Bous-
sinesq approximation, are

0 ¼ � 1
qo

@P
@x
þ m

d2u

dy2 þ ðgb sin /Þh; ð5Þ

0 ¼ � 1
qo

@P
@y
þ ðgb cos /Þh; ð6Þ

u
@h
@x
¼ a

@2h
@y2 ; ð7Þ
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where P is the modified pressure, P � p � pe + qog sin /(x � L),
and h � T � To. The boundary conditions at the channel walls
are

at y ¼ 0; u ¼ 0; k
@T
@y
¼ �q002; ð8aÞ

at y ¼ S; u ¼ 0; k
@T
@y
¼ q001: ð8bÞ

Ambient temperature and pressure are assumed at the inlet:

at x ¼ 0; T ¼ To; P ¼ 0: ð8cÞ

At the exit,

at x ¼ L; P ¼ 0: ð8dÞ

The governing equations and boundary conditions are non-dimen-
sionalized using the following length, velocity, pressure, and tem-
perature scales:

x� ¼ x
L

; y� ¼ y
S

; u� ¼ u
uo

; P� ¼ P
qobhbegL sin /

; h� ¼ h
q001S=k

ð9Þ

where uo is a characteristic velocity, and hbe is the difference be-
tween the mean (bulk) exit fluid temperature, Tbe, and the ambient
temperature, To. The values of uo and hbe are determined from force
and energy balances in the channel. The balance of buoyancy and
friction forces is given by

AcDP ¼ Assw: ð10Þ

The hydraulic diameter, wall shear stress and pressure difference
are scaled as

Dh ¼
4Ac

As=L
¼ 2S; sw ¼ l uo

Dh
; DP ¼ qoLðgb sin /Þhbe: ð11Þ

The overall energy balance is

qouoScphbe ¼ q001ð1þ rÞL; ð12Þ

where r � q002=q001 is the ratio of heat flux at the channel walls. Com-
bining Eqs. (10)–(12) yields expressions for uo and hbe:

uo ¼
a
S
ðS=LÞ�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ra00 sin /ð1þ rÞ

q
; ð13Þ

hbe ffi
q001S
k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r

Ra00 sin /

s
: ð14Þ

Using these scales, the governing equations and boundary condi-
tions expressed in dimensionless form are

0 ¼ � @P�

@x�
þ d2u�

dy�2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ra00 sin /

1þ r

s
h�; ð15Þ

0 ¼ � @P�

@y�
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ra00 sin /

1þ r

s
½ðS=LÞ cot /�h�; ð16Þ

u�
@h�

@x�
¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ra00 sin /ð1þ rÞ
p @2h�

@y�2
; ð17Þ

at y� ¼ 0; u� ¼ 0;
@h�

@y�
¼ �r; ð18aÞ

at y� ¼ 1; u� ¼ 0;
@h�

@y�
¼ 1; ð18bÞ

at x� ¼ 0; h� ¼ 0; P� ¼ 0; ð18cÞ
at x� ¼ 1; P� ¼ 0: ð18dÞ

The dimensionless equations lead to an expectation that the Nusselt
number may depend on three dimensionless groups:
Nu ¼ NuðRa00 sin /; r; ðL=SÞ cot /Þ: ð19Þ

In agreement with prior analysis [2,5], Eq. (19) reduces to
Nu ¼ NuðRa00Þ for vertical channels (/ = 90�) with either symmetric
(r = 1) or asymmetric heating (r = 0). The present work shows that
the Nusselt number does not depend on (L/S)cot /.

An analytical solution for Eqs. (15)–(18) is derived using a tech-
nique similar to that presented by Aung [2] for free convection in a
vertical channel. Integrating the energy equation (17) from y* = 0 to
1, and applying the constant heat flux boundary conditions yieldsZ 1

0
u�ðy�Þ @h

�

@x�
dy� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r

Ra00 sin /

s
: ð20Þ

Thus, @h
�

@x� ¼ f1ðy�Þ, and the general solution for the temperature field
is formulated as

h� ¼ f1ðy�Þðx� � nÞ þ f2ðy�Þ: ð21Þ

Substitution of Eq. (21) into Eq. (17) yieldsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ra00 sin /ð1þ rÞ

q
u�ðy�Þf1ðy�Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

function of y� only

¼ f 001 ðy�Þðx� � nÞ þ f 002 ðy�Þ; ð22Þ

which is valid only if f 001 ðy�Þ ¼ 0, i.e., f1ðy�Þ ¼ ay� þ b. The uniform
heat flux boundary conditions dictate that a = 0. Thus, the expres-
sions for the temperature distribution and the energy equation re-
duce to

h� ¼ bðx� � nÞ þ f2ðy00Þ ð23Þ

and

f 002 ðy�Þ ¼ b
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ra00 sin /ð1þ rÞ

q
u�: ð24Þ

To determine f2ðy�Þ and u*, a second relation is required and is de-
rived from conservation of momentum. First, the temperature pro-
file, Eq. (23), is substituted into the conservation of momentum Eqs.
(15) and (16). The pressure terms are eliminated by differentiating
Eq. (15) with respect to y* and Eq. (16) with respect to x* and com-
bining the two equations. The result is

f 02ðy�Þ ¼ bðS=LÞ cot /�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r

Ra00 sin /

s
d3u�

dy�3
: ð25Þ

Thus,

f2ðy�Þ ¼ bðS=LÞ cot /y� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r

Ra00 sin /

s
d2u�

dy�2
þ c: ð26Þ

Differentiating Eq. (25) with respect to y* and equating it to Eq. (24)
yields a fourth order ODE for the velocity field:

d4u�

dy�4
þ bRa00 sin /u� ¼ 0: ð27Þ

The solution is

u�ðy�Þ ¼ eky� ðC1 cos ky� þ C2 sin ky�Þ þ e�ky� ðC3 cos ky� þ C4 sin ky�Þ;
ð28Þ

where k4 � 1
4 bRa00 sin / and C1. . .C4 are constants.

Substitution of Eqs. (26) and (28) into Eq. (23) provides the tem-
perature field:

h�ðx�; y�Þ ¼ bðx� � nÞ þ bðS=LÞ cot /y� þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bð1þ rÞ

q
½eky� ðC1 sin ky�

� C2 cos ky�Þ � e�ky� ðC3 sin ky� � C4 cos ky�Þ�; ð29Þ

where the constant c from Eq. (26) is absorbed into the coefficient n.
The constants C1. . .C4 are determined by applying the boundary
conditions (18a) and (18b).
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C1 ¼
sin k

2jk3

½c� 1þ 2ek sin kðcþ rÞ þ e2kð1� cÞ�
½e�k � 2ekð1þ 2j� 2j cos2 kÞ þ e3k� ; ð30aÞ

C2 ¼
C1½2� cot kð1� e2kÞ� þ ðcþ rÞ=2jk3

1� e2k
; ð30bÞ

C3 ¼ �C1; ð30cÞ
C4 ¼ C1 cot kð1� e2kÞ � C2e2k; ð30dÞ

where j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þr
Ra00 sin /

q
and c ¼ bðS=LÞ cot /.

The constant b is evaluated using the fluid temperature at the
outlet of the channel. The dimensionless mean outlet air tempera-
ture is

h�be ¼
R 1

0 u�ðy�Þh�ðx� ¼ 1Þdy�R 1
0 u�ðy�Þdy�

: ð31Þ

By replacing the characteristic velocity, uo, in Eq. (12) with the
mean velocity, one can show that the dimensionless mean outlet
air temperature is also given by

h�be ¼
jR 1

0 u�ðy�Þdy�
: ð32Þ

Equating Eqs. (31) and (32) yieldsZ 1

0
u�ðy�Þh�ðx� ¼ 1Þdy� ¼ j; ð33Þ

which after the substitution of the velocity and temperature profiles
given in Eqs. (28) and (29) becomes an algebraic equation for b.

Finally, n is estimated from the channel exit pressure boundary
condition. By integrating Eqs. (15) and (16) with respect to x* and
y*, respectively, and comparing the terms, an expression for the
pressure distribution is determined:

P�ðx�; y�Þ ¼ c
j

x�y� þ b
2j

x�2 � bn
j

x� þ c2

2bj
y�2 � cn

j
y� � c

b
du�

dy�
: ð34Þ

The dimensionless exit pressure P�e reduces to zero for the vertical
orientation only if n = 1/2. In general, for inclined channels, P�e – 0.
However, for the range of parameters considered here
(1 � Ra00 � 102, 20 6 L/S 6 571 and 30 6 / 6 90�), the deviation in
the exit pressure from zero is negligible (P�e 	 1). The average chan-
nel Nusselt number based on the top wall temperature is defined as

Nu � q001
T1 � To

S
k
¼ 1

h�ðx� ¼ 1=2; y� ¼ 1Þ where T1 ¼
1
L

Z L

0
T1dx

� �
:

ð35Þ

The average and mid-height temperatures are identical for fully
developed flow because the temperature distribution is linear.
3. Developing flow

For high Ra00 numbers (large channel spacings), the Nusselt
number takes the form of the single plate limit. Because our inter-
est is in the top wall temperature, the relevant configuration is a
downward facing plate. For this orientation, the average Nusselt/
Rayleigh correlation is [11]

Nu ¼ 0:69ðRa00 sin /Þ1=5
: ð36Þ

Following this format, the average channel Nusselt number for in-
clined channels at high Ra0 0 may be formulated as

Nu ¼ BðRa00 sin /Þ1=5
; ð37Þ

where B is anticipated to greater than 0.69 due to the chimney ef-
fect in channels [1,3,4]. In the present work the value of B is deter-
mined from a regression analysis, as described in the following
section.
4. Composite relation

The composite relation is obtained following the procedure sug-
gested by Churchill and Usagi [25]. The correlation between the
Nusselt and the Rayleigh number are constructed by interpolation
between the asymptotic relations for high and low Rayleigh num-
bers. The average Nusselt number can be expressed in terms of
Ra00 sin / and r. In a format similar to Eq. (1),

Nu ¼ f½AðrÞðRa00 sin /Þ1=2��n
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{fully developed flow

þ ½BðRa00 sin /Þ1=5��ng�1=n
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{developing flow

: ð38Þ

The values of A, B, and n are obtained by a regression analysis of
Nusselt numbers obtained from Eqs. (29) and (35) for fully devel-
oped flow in the range 1 < Ra00 sin / < 10 (where empirical data
are not available) and for developing flow from Eq. (2) in the range
10 < Ra00 sin / < 105. The best fit is found for n = 2, B = 0.78, and
A = 0.28 for symmetric heating and A = 0.4 for asymmetric heating.
The coefficients of determination are R2 = 0.9920 and R2 = 0.9939
for symmetric and asymmetric heating, respectively. In the case
of vertical channels, Bar-Cohen and Rosenhow [5] provide values
for the coefficient A only for symmetric and asymmetric heating
(see Eq. (1)). Applying their model for fully developed flow one
can show that AðrÞ / 1=

ffiffiffiffiffiffiffiffiffiffiffi
1þ r
p

for any r. Therefore, based on the
present regression analysis, we suggest using AðrÞ ¼ 0:4=

ffiffiffiffiffiffiffiffiffiffiffi
1þ r
p

:

5. Results

Predictions of the average channel Nusselt number as a function
of Ra00 sin / for symmetric (q002 ¼ q001, r = 1) and asymmetrical heating
(q002 ¼ 0, r = 0) are presented in Fig. 2a and b for Ra00 � 105 and
30� � / � 90�. Using the analytical solution for fully developed
flow, the aspect ratio, L/S was varied from 20 to 571. For symmetric
heating (Fig. 2a), the results are compared to the correlations of
Manca et al. [18] and Bar-Cohen and Rosenhow [5]. For asymmetric
heating (Fig. 2b), the results are also compared to the correlation of
Webb and Hill [7]. In these figures, the Bar-Cohen and Rosenhow
[5] and Webb and Hill [7] expressions obtained for vertical chan-
nels are modified by replacing g with g sin /. There is an excellent
agreement of the present analytical predictions for Ra00 � 102 to the
modified correlations for vertical channels and data for inclined
channels. The agreement between the Bar-Cohen and Rosenhow
modified correlation and the analytical solution at low Ra0 0 (<10)
suggests the difference between temperature of the top wall at
mid-height and the average temperature along the wall is negligi-
ble within this range. At Ra0 0 > 100, the average Nusselt number is
higher than the mid-height Nusselt number. Therefore, for this
range, the predictions of Bar-Cohen and Rosenhow falls slightly be-
low the suggested relation. For a given heating mode (r = 0 or r = 1),
the Nusselt number depends only on Ra00 sin /. The influence of the
inclination angle is felt only in the streamwise direction (i.e., the
effect of the dimensionless parameter (L/S)cot / on the average
Nusselt number is negligible) and the form of equation (38) is jus-
tified. The Nusselt number therefore increases with the inclination
angle as sin /1=2 for fully developed flow and sin /1=5 for developing
flow. The results are well represented by

Nu ¼ 6:25ð1þ rÞ
Ra00 sin /

þ 1:64

ðRa00 sin /Þ2=5

" #�1=2
1 � Ra00 � 105

30� � / � 90�

( )
:

ð39Þ

To illustrate the effect of the heat flux ratio, r, on the Nusselt num-
ber, Eq. (39) is plotted in Fig. 3 for r = 0, 1/3, 2/3, and 1. For
Ra00 � 102, the top wall temperature is linked to the fluid bulk tem-
perature. The latter increases with the total heat rate of the channel,



0.1

1.0

10.0

1.E-02 1.E-01 1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05

Ra"sinφ

N
u

r=0
r=1/3
r=2/3
r=1
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Fig. 2. Nusselt number versus Rayleigh number for (a) symmetric heating and (b) asymmetric heating.
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q001ð1þ rÞ, and therefore Nu decreases with r. For Ra00 � 101, the flow
is developing and heat transfer at the top wall is independent of the
bottom wall heating condition.
6. Conclusion

This paper provides a physically based correlation for natural
convection of air in open-ended inclined channels when both
boundaries are subject to a uniform heat flux with either symmet-
ric or asymmetric heating. A composite relation for the average
channel Nusselt number based on the top surface temperature is
presented in Eq. (39). This correlation was developed with the help
of analytical analysis at low Rayleigh numbers and available
empirical data at high Rayleigh numbers. The suggested correla-
tion agrees very well with available data. For either heating mode,
the Nusselt number depends only on the modified channel Ray-
leigh number, multiplied by the gravity component at the stream-
wise direction. This finding is analogous to the result of Azevedo
and Sparrow [12] who tested channels with one or two isothermal
walls.
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